
PROGRAMMING FOR BUSINESS

COMPUTING

商管程式設計

Strings

Hsin-Min Lu

盧信銘

台大資管系

Fall, 2017 1Programming for Business Computing

Programming for Business Computing 2

The String Data Type

• Processing text data is an important task for PC users.

• Think about the time you spent on using word processors such as

MS words.

• A large portion of online interactions are posting text messages.

• In Python, text is represented in by the string data type.

• A string is a sequence of characters enclosed within

quotation marks (") or apostrophes ('). ☼

Fall, 2017

Programming for Business Computing 3

The String Data Type (Cont’d.)

• >>> str1="Hello"

• >>> str2='ntu'

• >>> print(str1, str2)

• Hello ntu

• >>> type(str1)

• <class 'str'>

• >>> type(str2)

• <class 'str'>
☼

Fall, 2017

Programming for Business Computing 4

The String Data Type (Cont’d.)

• We have encountered the input() function before.

• input() takes user input string and return it to the

caller.

• A string is a sequence of characters.

• Access the individual characters in a string through
indexing.
• From left to right.

• Starting from 0.

Fall, 2017

☼

Programming for Business Computing 5

String Indexing

b u l i m i a

0 1 2 3 4 5 6

Fall, 2017

Recall the way to invoke a function is

function_name() ☼

Programming for Business Computing 6

String Indexing (Cont’d.)

• In a string of n characters, the last character is
at position n-1.

• Index from the right to left using negative
indexes.

Fall, 2017

b u l i m i a

0 1 2 3 4 5 6

☼

Programming for Business Computing 7

Slicing Strings
• Slicing: access a contiguous sequence of characters from

a string.

• Syntax: <string>[<start>:<end>]

• Both start and end are ints

• Beginning at position start and runs up to but doesn’t

include the position end.

Fall, 2017

b u l i m i a

0 1 2 3 4 5 6

>>> str1[3:5]
'im'
>>> str1[2:6]
'limi'
>>> str1[2:8]
'limia'
>>> str1[2:10]
'limia'
>>> str1[2:]
'limia'
>>> str1[:5]
'bulim'

☼

Programming for Business Computing 8

Some String Operations
• Can we put two strings together into a longer string?

• Concatenation “glues” two strings together (+).

• Repetition builds up a string by multiple concatenations of
a string with itself (*).

Fall, 2017

>>> "spam" + "eggs"
'spameggs'
>>> "Spam" + "And" + "Eggs"
'SpamAndEggs'
>>> 3 * "spam"
'spamspamspam'
>>> "spam" * 5
'spamspamspamspamspam'
>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs‘
>>> len("career")
6

☼

Programming for Business Computing 9

The String Data Type

• The function len will return the length of a string.
a1="career"

print(len(a1))

for ch in a1:

print("Get a character:", ch)

• Output:

6

Get a character: c

Get a character: a

Get a character: r

Get a character: e

Get a character: e

Get a character: r

Fall, 2017

☼

Programming for Business Computing 10

String Operations

Operator Meaning

+ Concatenation

* Repetition

<string>[] Indexing

<string>[:] Slicing

len(<string>) Length

for <var> in <string> Iteration through characters

Fall, 2017

☼

Programming for Business Computing 11

Strings, Lists, and Sequences
• Strings and lists are quite similar.
• Both are a special kind of sequence.
• There are some common operations that can be

applied to both types.
• Some examples:
• >>> [1,2] + [3,4]

• [1, 2, 3, 4]

• >>> [1,2]*3

• [1, 2, 1, 2, 1, 2]

• >>> grades = ['A', 'B', 'C', 'D', 'F']

• >>> grades[0]

• 'A'

• >>> grades[2:4]

• ['C', 'D']

• >>> len(grades)

• 5

Fall, 2017

☼

Programming for Business Computing 12

Strings, Lists, and Sequences

• Strings are always sequences of characters, but lists can

be sequences of arbitrary values.

• Lists can have numbers, strings, or both!

myList = [1, "Spam ", 4, "U"]

☼

Fall, 2017

Programming for Business Computing 13

Mutable and Immutable, Again

• Lists are mutable, they can be changed.
• Strings can not be changed.
>>> myList = [34, 26, 15, 10]

>>> myList[2]

15

>>> myList[2] = 0

>>> myList

[34, 26, 0, 10]

>>> myString = "Hello World"

>>> myString[2]

'l'

>>> myString[2] = "p"

Traceback (most recent call last):

File "<pyshell#16>", line 1, in -toplevel-

myString[2] = "p"
TypeError: object doesn't support item assignment

Fall, 2017

☼

• Two commonly used date format is yyyymmdd and
ddmmyy.
• yyyymmdd: 20141203, 19990212

• ddmmyy: 03122014, 12021999

def ymd2dmy(dstr):

"""Convert date format from ymd to dmy

E.g. 20150312 to 12032015"""

y1 = dstr[0:4]

m1 = dstr[4:6]

d1 = dstr[6:8]

return d1 + m1 + y1

Fall, 2017 Programming for Business Computing 14

Example: Converting Date Format

☼

• Output:

>>> d1 = "20150512"

>>> d2 = ymd2dmy(d1)

>>> print("Converted date is", d2)

Converted date is 12052015

>>>

>>> d1 = "20171123"

>>> d2 = ymd2dmy(d1)

>>> print("Converted date is", d2)

Converted date is 23112017

Fall, 2017 Programming for Business Computing 15

Converting Date Format
def ymd2dmy(dstr):

y1 = dstr[0:4]

m1 = dstr[4:6]

d1 = dstr[6:8]

return d1 + m1 + y1

☼

• Taiwan ID number of a string of length 10.

• First digit must be a upper case letter (between A to Z).

• Second digit must be either 1 or 2.

• The remaining digits are numbers.

• Example ID string: A123456789.

• Use a simple checksum rule to validate whether an ID is

valid or not.

• According to this rule, A123456789 is valid, but

A123456788 is not.

• We are going to see how to validate Taiwan ID.

Fall, 2017 Programming for Business Computing 16

Example: Validating Taiwan ID String

☼

• Use len() to check length

>>> str1="A123456789"

>>> len(str1)

10

• How to validate the first digit?

• As mentioned before, a string is a sequence of characters.

• Each character is stored using some sort of internal

encoding.

• Traditional, English characters are stored using the ASCII

system (American Standard Code for Information

Interchange).

Fall, 2017 Programming for Business Computing 17

Length and the First Digit

☼

Programming for Business Computing 18

ASCII System

• 0 – 127 are used to represent the characters

typically found on American keyboards.

• 65 – 90 are “A” – “Z”

• 97 – 122 are “a” – “z”

• 48 – 57 are “0” – “9”

• The others are punctuation and control codes

used to coordinate the sending and receiving of

information. ☼

Fall, 2017

☼

Programming for Business Computing 19

Finding Internal Codes

• The ord function returns the numeric (ordinal)
code of a single character.

• The chr function converts a numeric code to the
corresponding character.

>>> ord("A")

65

>>> ord("a")

97

>>> chr(97)

'a'

>>> chr(65)

'A'

☼

Fall, 2017

• Note that the internal codes are arranged so that upper

case letters are occupied in a continuous chunk of code

range

• A 65, B 66, C 67, …, Z 90.

• We can use this characteristic to validate the first digit.

• The first internal encoding of the first digit need to be

between 65 and 90.

Fall, 2017 Programming for Business Computing 20

Checking the First Digit

☼

>>> idstr = "A123456789"

>>> code1 = ord(idstr[0])

>>> if (code1 < 65 or code1 > 90):

... print("not valid")

... else:

... print("valid")

...

valid

>>>

>>> idstr = "b123456789"

>>> code1 = ord(idstr[0])

>>> if (code1 < 65 or code1 > 90):

... print("not valid")

... else:

... print("valid")

...

not valid

Fall, 2017 Programming for Business Computing 21

Checking the First Digit

☼

• 1. Map the first digit to a two-digit number.

• E.g. A 10, B 11, C 12, D 13, .. Z 33

• Note: not in the order of A to Z.

• 2. Attach the two-digit number to the remaining 9-digit ID.

• 3. Compute a checksum by multiplying the digit at each

position to a weight: [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

• 4. Sum over all results, divide the sum by 10 and compute

the remainder.

• 5. If the remainder is 0, then it is valid. Otherwise, this is a

invalid ID.

Fall, 2017 Programming for Business Computing 22

Validation Rules for Taiwan ID

☼

A 10 H 17 O 35 V 29

B 11 I 34 P 23 W 32

C 12 J 18 Q 24 X 30

D 13 K 19 R 25 Y 31

E 14 L 20 S 26 Z 33

F 15 M 21 T 27

G 16 N 22 U 28

Fall, 2017 Programming for Business Computing 23

Mapping Table

☼

• ID: A123456789

• Convert ‘A’ to ‘10’

• New ID: 10123456789

• Apply the weight: [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

• 1*1 + 0*9 + 1*8 + 2*7 + 3*6 +

4*5 + 5*4 + 6*3 + 7*2 + 8*1 + 9*1 = 130

• 130 / 10 = 13, remainder = 0

• Valid ID.

Fall, 2017 Programming for Business Computing 24

Example

☼

• Mapping the first letter to a two-digit number

>>> idstr="A123456789"

>>> code1 = ord(idstr[0])

>>> cmap = [10, 11, 12, 13, 14, 15, 16, 17, \

... 34, 18, 19, 20, 21, 22, 35, 23, 24, \

... 25, 26, 27, 28, 29, 32, 30, 31, 33]

>>> num1 = cmap[code1 - 65]

>>> newid = str(num1) + idstr[1:]

>>> print("newid=", newid)

newid= 10123456789

Fall, 2017 Programming for Business Computing 25

The Validation Process in Python

☼

• cmap is a list that contains 26 elements

• The first element is for letter A, the second element is for

letter B, and so on.

>>> code1 = ord(idstr[0])

• code1 is the ASCII code of the first digit

>>> num1 = cmap[code1 - 65]

• num1 is 0 for A, 1 for B, and so on

• >>> newid = str(num1) + idstr[1:]

• Concatenate the two-digit number with the remaining

ID.

Fall, 2017 Programming for Business Computing 26

Mapping the First Digit

☼

>>> weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

>>> checksum = 0

>>> for i in range(0, 11):

... checksum += weight[i] * int(newid[i])

...

>>> remainder = checksum % 10

>>> print("checksum=", checksum)

checksum= 130

>>> print("remainder=", remainder)

remainder= 0

Fall, 2017 Programming for Business Computing 27

Compute the Checksum

☼

• Create a function that return True if the ID is valid,
return False otherwise.

def verify_twid(idstr):

"""Verify Taiwan ID Number.

Return True if valid; False otherwise"""

#check length

if len(idstr) != 10:

return False

#check first letter

code1 = ord(idstr[0])

if (code1 < 65 or code1 > 90):

return False

#check the remaining letters

for i in range(1,10):

code2 = ord(idstr[i])

if (code2 < 48 or code2 > 57):

return False

Fall, 2017 Programming for Business Computing 28

Putting Everything Together

☼

def verify_twid(idstr):

#... Continue from previous slide …

#check the second character

code2 = ord(idstr[1])

if (code2 < 49 or code2 > 50):

return False

#convert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18, 19, 20,
21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

checksum = 0

for i in range(0, 11):

checksum += weight[i] * int(newid[i])

if checksum % 10 == 0:

return True

else:

return False

Fall, 2017 Programming for Business Computing 29

☼

>>> id1="A123456789"

>>> print(verify_twid(id1))

True

>>> verify_twid("B123456789")

False

>>> verify_twid("C999")

False

>>> verify_twid("123999")

False

>>> verify_twid("Z199999999")

False

>>> verify_twid("Z199999990")

True

Fall, 2017 Programming for Business Computing 30

verify_twid() in Action

☼

• Python可以講中文
• 真的嗎?

• 真的!

• When the computer systems started to become popular in
the 1960s, most systems used ASCII encoding.

• ASCII, however, cannot handle eastern languages
• 中文、日文、韓文等

• Why? A character is 8 bit long, can encode at most 28 − 1 = 255
unique characters

• 但繁體中文常用字有3,000以上!

• 那怎麼辦?

• How about use 2 characters to encode a Chinese character?

• This will allow as to encode 216 − 1 = 65535 characters.

• Enough? I guess! ☼

Fall, 2017 31

我要Python講中文

Programming for Business Computing

☼

• Double-byte (2 bytes = 16 bits) character sounds good.

• But there are a few complications.

• 各家電腦廠商 (香港、台灣)各自有自家的編碼法，以至於檔案無法
互相流通。

• 大陸用簡體中文耶 (但是早期他們在鐵幕裡)

• 日本有漢字，跟我們繁體中文有點像，又不是很一樣。

• 1983年資訊工業策進會為五大中文套裝軟體所設計中文共
通內碼，稱為Big-5 (大五碼)

• 使用大五碼的軟體在市場上打下一片天地，Big5也成為中
文編碼的業界標準。

• Big5為中文世界(台灣、香港)第一個廣為接受的編碼標準
• 大陸則使用GB2312 ☼

Fall, 2017 32

我要Python講中文

Programming for Business Computing

☼

• 其實ASCII只說英文這件事在世界各地都是個問題。

• Unicode (一個非營利組織) 為了解決這個問題，開始發展
世界統一的文字編碼。

• 1992年六月收錄20,902中日韓文字。

• 目前大部分的作業系統支援Unicode

• Windows, Linux, Mac, Andriod, iPhone, etc.

• 常見的Unicode編碼方式有兩種
• UTF-8 (Linux預設): one, two, or three bytes

for a character.

• UTF-16 (Microsoft Windows預設): one or two bytes for a character.

• You should use UTF-8 in most cases. ☼

Fall, 2017 33

我要Python講中文

Programming for Business Computing

• Python string support Unicode.

• How to use Unicode (Chinese characters) in your Python

scripts.

• 心法: 要告訴Python你的程式是什麼編碼
• # -*- coding: utf8 -*-

• (放在第一行，指定UTF8編碼)

• 或是

• #!/usr/bin/python

• # -*- coding: utf8 -*-

• (放在第二行)

☼

Fall, 2017 34

Python Speaks Unicode

Programming for Business Computing

• In Notepad++: Settings Preferences New Document

• Select UTF-8, and check “Apply to opened ANSI files”

Fall, 2017 Programming for Business Computing 35

Make Sure Your Text Editor Use UTF-8

☼

• Try the following simple python script.

-*- coding: utf8 -*-

msg=u'中文測試'

print(msg)

• If you see error message like this, you need to fix the encoding
of your file:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "testcmsg1.py", line 2

SyntaxError: 'utf8' codec can't decode byte 0xa4 in position
0: invalid start byte

Fall, 2017 36

中文訊息

Programming for Business Computing

☼

• 如果你的檔案不是UTF-8編碼…

• If you are using Notepad++, goto

“Encoding” “Convert to UTF-8”

save the file

• Try again! You will see:

中文測試

• Need to be very careful about your

Chinese encoding ☼

Fall, 2017 37

中文訊息

Programming for Business Computing

msg=u'中文測試'

• 字串前面加u表示這個是個Unicode字串。叫Python用適當的解
碼方式轉換成Unicode。

• Python Ver. 3.X 可以不用加u。但Python Ver. 2.X如果沒加，則
需要後續作encoding處理。

• 看看這個例子:

• # -*- coding: utf8 -*-

• msg=u'中文測試'

• print("msg=", msg)

• print("len(msg)=", len(msg))

• msg2='中文測試'

• print("msg2=", msg2)

• print("len(msg2)=", len(msg2))

Fall, 2017 38

中文訊息

Output:

msg= 中文測試
len(msg)= 4
msg2= 中文測試
len(msg2)= 4 ☼

Programming for Business Computing

• We are look at the internal
encoding of characters

>>> chr(65)

'A'

>>> ord('A')

65

>>> ord('鴨')

40232

>>> chr(40232)

'鴨'

Fall, 2017 39

chr and ord

• chi(i) returns the character

with internal encoding i

• ord(str) returns the internal

encoding of str

Programming for Business Computing

☼

• Suppose you want to pass a secret message to you pal but
you do not want other people to easily know what the
message is.

• You can to convert the text into internal encoding

-*- coding: utf8 -*-

msg='晚上七點水源星巴克見'

for achr in msg:

print(ord(achr), end= " ")

print()

• Here is the output:
• 26202 19978 19971 40670 27700 28304 26143 24052 20811
35211

Fall, 2017 40

Getting the internal code of a message

Programming for Business Computing

☼

• The code starts with a declaration on the encoding of the

program.

• The for loop takes a character one time, and pass it to

ord()

• Note the print line:
print(ord(achr), end= " ")

• What is the purpose of end= " " ?☼

Fall, 2017 41

Getting the internal code of a message

Programming for Business Computing

☼

• Now you pal get this message, he or she wants to know what
this is about
• 26202 19978 19971 40670 27700 28304 26143 24052 20811
35211

• Start with a string that contain the code, and split the string by
space

code='26202 19978 19971 40670 27700 28304 26143 24052
20811 35211'

tmpcode = code.split(' ')

• Now the tmpcode contains a list of strings, each a code for a
character

>>> tmpcode

['26202', '19978', '19971', '40670', '27700', '28304', '26143',
'24052', '20811', '35211'] ☼

Fall, 2017 42

I want to know what this message is about

Programming for Business Computing

☼

• We can retrieve the code of each character using its index:

>>> tmpcode[0]

'26202'

>>> tmpcode[3]

'40670'

• Note that each element is a string.

• We want to use chr() to convert the code into message, one

character a time.

• However, chr() takes int as input.

• We can convert string to int by the int() function.

>>> int(tmpcode[3])

40670 ☼

Fall, 2017 43

I want to know what this message is about

Programming for Business Computing

• After getting a character, we need to concatenate them

together.

• So we start with a empty unicode string

msg = ""

• Concatenate the first character to msg:

msg = msg + chr(int(tmpcode[0]))

• Another way to write this line:

msg += chr(int(tmpcode[0]))

☼

Fall, 2017 44

I want to know what this message is about

Programming for Business Computing

• Putting everything together

code='26202 19978 19971 40670 27700 28304 26143 24052
20811 35211'

tmpcode = code.split(' ')

msg = ""

for acode in tmpcode:

msg += chr(int(acode))

print ("msg =", msg)

• The output is:

msg = 晚上七點水源星巴克見

☼

Fall, 2017 45

I want to know what this message is about

Programming for Business Computing

• capitalize(): Capitalize the first character.

• title(): Capitalize the first character of each word.

• upper(): Convert all characters to uppercase.

• replace(old, new): Replace the occurrences of old with new.

• Examples:

>>> s = "athletes could not join the parade"

>>> print(s.capitalize())

Athletes could not join the parade

>>> print(s.title())

Athletes Could Not Join The Parade

>>> print(s.upper())

ATHLETES COULD NOT JOIN THE PARADE

>>> print(s.replace("athletes", "guests"))

guests could not join the parade

Fall, 2017 Programming for Business Computing 46

Common String Operations

☼

• See Python 3 Document for a list of complete methods.

(Section 4.7.1)

• https://docs.python.org/3/library/stdtypes.html#string-

methods

>>> #count: Return the number of non-overlapping occurrences

>>> s2 = "media and mania"

>>> print(s2.count("ia"))

2

Fall, 2017 Programming for Business Computing 47

Common String Operations (Cont’d.)

>>> #in operation

>>> uletter = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

>>> 'A' in uletter

True

>>> 'z' in uletter

False

>>> 'AD' in uletter

False

>>> 'MN' in uletter

True

☼

https://docs.python.org/3/library/stdtypes.html#string-methods

• >>> #find: Return the lowest index in the string where
the given substring is found

• >>> s3 = "02-33661184"

• >>> s3.find('-')

• 2

• >>>

• >>> #is numeric characters

• >>> s4 = "1235"

• >>> s4.isnumeric()

• True

• >>> s5 = "1235.2"

• >>> s5.isnumeric()

• False

Fall, 2017 Programming for Business Computing 48

Common String Operations (Cont’d.)

☼

>>> #is upper characters

>>> s6 = "HI"

>>> s6.isupper()

True

>>> s7 = "Hi"

>>> s7.isupper()

False

>>>

>>> #split a string by a given separator string.

>>> s8 = "Not a useful tool."

>>> print(s8.split(" "))

['Not', 'a', 'useful', 'tool.']

>>>

Fall, 2017 Programming for Business Computing 49

Common String Operations (Cont’d.)

☼

>>> #remove extra spaces

>>> s9 = " many spalce "

>>> print(s9.strip())

many spalce

>>>

>>> #remove given characters.

>>> 'www.example.com'.strip('cmowz.')

'example'

Fall, 2017 Programming for Business Computing 50

Common String Operations (Cont’d.)

☼

• We often need to provide output in a specific format.

• Give “pretty print”

• For example, output gasoline price using a specific format

($23.4).

• Output stock price with two decimal places (e.g., 32.12).

• Add extra “0” upfront (e.g. ID: 000325).

• Generating reports following a specific format:

• Name: Joe Smith Phone: 02-12345543

• First Contact: 2006-12-32 Age: 40

Fall, 2017 Programming for Business Computing 51

Formatting Strings

☼

Programming for Business Computing 52

String Formatting

• Consider this example: We have a variable that store the
price of a product, and we want to output the price with
only two decimal places:

>>> prc=13.87623

>>> print("Current price: %0.2f" % prc)

Current price: 13.88

• For numbers, % means the remainder operation.

• For strings, % is a string formatting operator. ☼

Fall, 2017

☼

Programming for Business Computing 53

String Formatting

• The formatting specifier has the form:
%<width>.<precision><type-char>

• Type-char can be decimal, float, string (decimal is base-
10 ints)

• <width> and <precision> are optional.

• <width> tells us how many spaces to use to display the
value. 0 means to use as much space as necessary.

>>> prc=13.87623

>>> print("Current price: %0.2f" % prc)

Current price: 13.88

Fall, 2017

☼

Programming for Business Computing 54

String Formatting

• If the given <width> is not enough, Python will

expand the space until the result fits.

• <precision>: number of places to display after the

decimal (for floating point numbers only).

• %0.2f: use as much space as necessary and two

decimal places to display a floating point number.

☼

Fall, 2017

Programming for Business Computing 55

String Formatting
>>> "%s同學您好, 您借的書已逾期%d天，請盡速歸還。" % ("王大雄", 55)

'王大雄同學您好, 您借的書已逾期55天，請盡速歸還。'

>>> '整數： %5d[欄位長度為5]' % 7

'整數： 7[欄位長度為5]'

>>> '整數： %10d[欄位長度為10]' % 99

'整數： 99[欄位長度為10]'

>>> '浮點數： %10.5f[欄位長度為10，五位小數點' % 3.1415926

'浮點數： 3.14159[欄位長度為10，五位小數點'

>>> '浮點數： %0.5f[欄位長度為0，五位小數點' % 3.1415926

'浮點數： 3.14159[欄位長度為0，五位小數點'

>>> '比較兩個格式： %f 與 %0.20f' % (3.14, 3.14)

'比較兩個格式： 3.140000 與 3.14000000000000012434' ☼

Fall, 2017

Programming for Business Computing 56

String Formatting

• Output values are right-justified by default (if the

width is wider than needed)

• To left-justify use a negative width (e.g., %-10.3f)

• You may see random digits if showing a float with

long decimal places. This is caused by internal

representation for float.

☼

Fall, 2017

Programming for Business Computing 57

Concatenate Strings and Floats

• You can use “+” to concatenate strings.

• Be very careful if you are concatenate string and other
data types (e.g. float).

>>> value = 3.14

>>> print ("The value is" + value + ".")

Traceback (most recent call last):

File "<input>", line 1, in <module>

TypeError: must be str, not float

If value is an int or float, Python thinks the + is a mathematical operation,

not concatenation, and “.” is not a number! ☼

Fall, 2017

THANK YOU!
Questions?

Fall, 2017 Programming for Business Computing 58

